Simulating Optimal Multi-Dimensional Auctions

Alexey Kushnir*, James Michelson \dagger (equal contribution)
*Tepper School of Business, Carnegie Mellon University, USA \dagger Department of Philosophy, Carnegie Mellon University, USA
akushnir@andrew.cmu.edu | jamesmic@andrew.cmu.edu

Introduction

Belloni et al. (2010) challenge the view that in the multi-dimensional setting optimal auctions are complex. We extend their simulation results and evaluate three conjectures derived from their claims.

Model

- 1 good with $j=1, \ldots, J$ quality grades and $i=1, \ldots, N$ buyers
- Each buyer i has a multi-dimensional type given by $v^{i}=\left(v_{1}^{i}, \ldots, v_{J}^{i}\right)$. The buyer's types are distributed according to F with support $V \equiv \prod_{j \in J}\left[\underline{v}_{j}, \bar{v}_{j}\right]$. The valuations are independent across buyers but could be correlated across grades.
- Buyer i 's utility is given by $u^{i}=\sum_{j=1}^{J} v_{j}^{i} q_{j}^{i}-m^{i}$
- A mechanism (q, m) is incentive compatible if

$$
\begin{equation*}
U^{i}\left(v^{i}, v^{-i}\right) \geq U^{i}\left(\widehat{v}^{i}, v^{-i}\right) \text { for all } \widehat{v}, v \in V \text { and } i \in N . \tag{IC}
\end{equation*}
$$

- A mechanism (q, m) is individually rational if

$$
\begin{equation*}
U^{i}\left(v^{i}, v^{-i}\right) \geq 0 \text { for all } v \in V \text { and } i \in N . \tag{IR}
\end{equation*}
$$

- The optimization problem for the seller can be formulated:

$$
\left\{\begin{array}{l}
\max _{Q, U} \int_{V} \sum_{j \in J}\left(v_{j}-c_{j}\right) Q_{j}(v)-U(v) d F(v) \\
\quad Q_{j}(v) \geq 0 \text { for all } v \in V, j \in J \\
\quad N \int_{A} \sum_{j \in J} Q_{j}(v) d F(v) \leq 1-\left(\int_{V \backslash A} d F(v)\right)^{N} \text { for all } A \subset V . \\
U(v)-U(\widehat{v}) \geq \sum_{j} Q_{j}(\widehat{v})\left(v_{j}-\widehat{v}_{j}\right) \text { for all } \widehat{v}, v \in V \\
U(\underline{v})=0
\end{array}\right.
$$

```
where }U(v)\equivU(v,v) and Q Qj (vi)=\mp@subsup{\int}{\mp@subsup{V}{}{N-1}}{}\mp@subsup{q}{j}{i}(\mp@subsup{v}{}{i},\mp@subsup{v}{}{-i})d\mp@subsup{F}{}{-i}(\mp@subsup{v}{}{-i})
```


Conjectures \& Refutations

Belloni et al. (2010) propose the class of exclusive buyer mechanisms that perform well relative to the numerical optimal mechanisms in their simulations. In these mechanisms, buyers compete in a second price auction for the right to be the only buyer to get the object. The winner then buys object quality q_{j} at price p_{j}. In the exclusive buyer mechanisms buyer i with highest value $\beta^{i}=\max \left(v_{1}^{i}-p_{1}, \ldots, v_{J}^{i}-p_{j}\right)$ wins. Our conjecture is:

Conjecture 1. The optimal auction revenue can be well approximated by the optimal exclusive buyer mechanism.

Figure 1: We test conjecture 1 in the setting where $N=2$ buyers' types are uniformly distributed on $J=2$ qualities $2,3] \times[2,3]$ and costs are 0 . The first figure shows the interim allocation probabilities for quality $1\left(Q_{1}\right)$. The second figure depicts the exclusion region - the set of buyer values that receive object with zero probability.

The allocation rule in Figure 1 cannot be implemented by an exclusive buyer mechanism and so we reject conjecture 1.

Conjecture 2. In some multi-buyer settings, the measure of buyers' types that receive no object (the exclusion region) in the optimal auction has measure zero in contrast to the corresponding single-buyer setting.
The graphs in Figure 2 prompt us to reject conjecture 2.

Figure 2: We test conjecture 2 in the original setting of Belloni et al. (2010). $N=2$ buyers' types are uniformly distributed on $J=2$ qualities $[6,8] \times[9,11]$ and costs are $c_{1}=0.9, c_{2}=5$. The first graph shows the allocation for
uality $1\left(Q_{1}\right)$ and quality $2\left(Q_{2}\right)$ for the single-buyer case. The second figure shows the allocation for quality $1\left(Q_{1}\right)$ an quality $1\left(Q_{1}\right)$ and quality $2\left(Q_{2}\right)$ for the single-buyer case. The second figure shows the allocation for quality $1\left(Q_{1}\right)$ an

Conjecture 3. The exclusion region of the optimal allocation is independent of the number of buyers $N=1,2,3, \ldots$
This conjecture was first proposed buyers by Kushnir and Shourideh Kushnir and Shourideh (2022) in the setting of Armstrong (1996). In Figure 3 the exclusion region did not change in any of the cases considered above for $N=1,2,3$ buyers.

FIGURE 3: The top row depicts symmetric auctions: the left graph shows the exclusion region for $N=1,2,3$ buyers with uniformly distributed types on $[0,1]$ and the right graph is instead for buyers with types distributed Beta $(1,2)$ on $[0,1]$. The bottom row shows non-symmetric auctions (still on $[0,1])$: the left graph $F\left(v_{1}\right) \sim U[0,1], F\left(v_{2}\right) \sim \operatorname{Beta}(1,2)$ and for the right graph $F\left(v_{1}\right) \sim U[0,1]$ whereas $F\left(v_{2}\right)$ is a truncated normal distribution.
Therefore we consider conjecture 3 a promising area of future research and do not reject conjecture 3 .

Conclusion

- We showed that the class of exclusive buyer mechanisms proposed by Belloni et al. (2010) does not approximate the optimal revenue in some environments.
- Additionally, the absence of an exclusion region in Belloni et al.'s result is not due to differences between optimal auctions in the single-buyer and multiple-buyer case.
- Lastly, we observed that the exclusion region is independent of the number of buyers in this setting. This observation is novel and should guide further theoretical work in this area.

References

Mark Armstrong. Multiproduct nonlinear pricing. Econometrica, 64(1):51-75, 1996.
Alexandre Belloni, Giuseppe Lopomo, and Shouqiang Wang. Multidimensional mechanism design: Finite-dimensional approximations and efficient computation. Operations Research, 58(4):10791089, 2010. URL http://www. jstor. org/stable/40793308.
Alexey Kushnir and Ali Shourideh. Optimal auctions in multi-dimensional environments. 2022.

